Termination w.r.t. Q of the following Term Rewriting System could be disproven:
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
__(__(X, Y), Z) → __(X, __(Y, Z))
__(X, nil) → X
__(nil, X) → X
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = x1
POL(U12(x1)) = 2·x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U23(x1)) = x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = x1
POL(U26(x1)) = 2·x1
POL(U31(x1)) = 2·x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = x1
POL(U42(x1)) = 2·x1
POL(U43(x1)) = x1
POL(U44(x1)) = x1
POL(U45(x1)) = x1
POL(U46(x1)) = x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = 2·x1
POL(U53(x1)) = 2·x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = 2·x1
POL(U56(x1)) = 2·x1
POL(U61(x1)) = x1
POL(U62(x1)) = x1
POL(U63(x1)) = x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = x1
POL(U82(x1)) = 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = x1
POL(__(x1, x2)) = 1 + 2·x1 + x2
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(nil) = 2
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U61(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPal → tt
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
isNePal → U61(isPalListKind)
isPal → tt
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = x1
POL(U12(x1)) = 2·x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U23(x1)) = x1
POL(U24(x1)) = x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = 2·x1
POL(U31(x1)) = 2·x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = x1
POL(U42(x1)) = 2·x1
POL(U43(x1)) = 2·x1
POL(U44(x1)) = x1
POL(U45(x1)) = x1
POL(U46(x1)) = x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = x1
POL(U53(x1)) = 2·x1
POL(U54(x1)) = x1
POL(U55(x1)) = 2·x1
POL(U56(x1)) = x1
POL(U61(x1)) = x1
POL(U62(x1)) = 2·x1
POL(U63(x1)) = x1
POL(U71(x1)) = 1 + 2·x1
POL(U72(x1)) = 1 + 2·x1
POL(U73(x1)) = x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 1 + x1
POL(U82(x1)) = 1 + 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 1
POL(isPal) = 1
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U61(tt) → U62(isPalListKind)
U62(tt) → U63(isQid)
U63(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
U61(tt) → U62(isPalListKind)
U63(tt) → tt
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = 2·x1
POL(U12(x1)) = x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = 2·x1
POL(U23(x1)) = x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = x1
POL(U31(x1)) = x1
POL(U32(x1)) = 2·x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = 2·x1
POL(U42(x1)) = x1
POL(U43(x1)) = x1
POL(U44(x1)) = 2·x1
POL(U45(x1)) = x1
POL(U46(x1)) = 2·x1
POL(U51(x1)) = 2·x1
POL(U52(x1)) = 2·x1
POL(U53(x1)) = x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = x1
POL(U56(x1)) = x1
POL(U61(x1)) = 2 + 2·x1
POL(U62(x1)) = 1 + 2·x1
POL(U63(x1)) = 1 + x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = 2·x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = x1
POL(U82(x1)) = x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U62(tt) → U63(isQid)
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following Q TRS is given: Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U62(tt) → U63(isQid)
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
The following rules can be removed by the rule removal processor [15] because they are oriented strictly by a polynomial ordering:
U62(tt) → U63(isQid)
Used ordering:
Polynomial interpretation [25]:
POL(U11(x1)) = x1
POL(U12(x1)) = 2·x1
POL(U13(x1)) = 2·x1
POL(U21(x1)) = 2·x1
POL(U22(x1)) = x1
POL(U23(x1)) = x1
POL(U24(x1)) = 2·x1
POL(U25(x1)) = 2·x1
POL(U26(x1)) = 2·x1
POL(U31(x1)) = 2·x1
POL(U32(x1)) = x1
POL(U33(x1)) = 2·x1
POL(U41(x1)) = 2·x1
POL(U42(x1)) = x1
POL(U43(x1)) = x1
POL(U44(x1)) = 2·x1
POL(U45(x1)) = 2·x1
POL(U46(x1)) = 2·x1
POL(U51(x1)) = x1
POL(U52(x1)) = 2·x1
POL(U53(x1)) = 2·x1
POL(U54(x1)) = 2·x1
POL(U55(x1)) = 2·x1
POL(U56(x1)) = x1
POL(U62(x1)) = 2 + 2·x1
POL(U63(x1)) = 1 + x1
POL(U71(x1)) = 2·x1
POL(U72(x1)) = x1
POL(U73(x1)) = 2·x1
POL(U74(x1)) = 2·x1
POL(U81(x1)) = 2·x1
POL(U82(x1)) = 2·x1
POL(U83(x1)) = x1
POL(U91(x1)) = x1
POL(U92(x1)) = 2·x1
POL(isList) = 0
POL(isNeList) = 0
POL(isNePal) = 0
POL(isPal) = 0
POL(isPalListKind) = 0
POL(isQid) = 0
POL(tt) = 0
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
U511(tt) → ISPALLISTKIND
U551(tt) → ISLIST
U521(tt) → ISPALLISTKIND
U221(tt) → ISPALLISTKIND
U311(tt) → U321(isPalListKind)
U511(tt) → U521(isPalListKind)
ISLIST → ISPALLISTKIND
U441(tt) → U451(isList)
U431(tt) → U441(isPalListKind)
U421(tt) → U431(isPalListKind)
U311(tt) → ISPALLISTKIND
U221(tt) → U231(isPalListKind)
U421(tt) → ISPALLISTKIND
U541(tt) → ISNELIST
ISPAL → ISPALLISTKIND
U111(tt) → U121(isPalListKind)
U441(tt) → ISLIST
ISNEPAL → U711(isQid)
U251(tt) → ISLIST
U731(tt) → U741(isPalListKind)
U231(tt) → ISPALLISTKIND
ISNELIST → ISPALLISTKIND
U731(tt) → ISPALLISTKIND
U551(tt) → U561(isList)
U451(tt) → ISNELIST
U541(tt) → U551(isNeList)
U241(tt) → ISLIST
U821(tt) → ISNEPAL
U721(tt) → U731(isPal)
U241(tt) → U251(isList)
U531(tt) → ISPALLISTKIND
U821(tt) → U831(isNePal)
U451(tt) → U461(isNeList)
U321(tt) → U331(isQid)
U811(tt) → ISPALLISTKIND
U411(tt) → U421(isPalListKind)
ISPAL → U811(isPalListKind)
U711(tt) → U721(isPalListKind)
U121(tt) → U131(isNeList)
ISLIST → U111(isPalListKind)
U721(tt) → ISPAL
U111(tt) → ISPALLISTKIND
U211(tt) → U221(isPalListKind)
U911(tt) → ISPALLISTKIND
U711(tt) → ISPALLISTKIND
ISNEPAL → ISQID
U411(tt) → ISPALLISTKIND
U811(tt) → U821(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
U231(tt) → U241(isPalListKind)
ISNELIST → U511(isPalListKind)
ISNELIST → U311(isPalListKind)
U531(tt) → U541(isPalListKind)
U321(tt) → ISQID
U251(tt) → U261(isList)
U121(tt) → ISNELIST
ISPALLISTKIND → U911(isPalListKind)
U521(tt) → U531(isPalListKind)
U911(tt) → U921(isPalListKind)
ISNELIST → U411(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → ISPALLISTKIND
U431(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
U511(tt) → ISPALLISTKIND
U551(tt) → ISLIST
U521(tt) → ISPALLISTKIND
U221(tt) → ISPALLISTKIND
U311(tt) → U321(isPalListKind)
U511(tt) → U521(isPalListKind)
ISLIST → ISPALLISTKIND
U441(tt) → U451(isList)
U431(tt) → U441(isPalListKind)
U421(tt) → U431(isPalListKind)
U311(tt) → ISPALLISTKIND
U221(tt) → U231(isPalListKind)
U421(tt) → ISPALLISTKIND
U541(tt) → ISNELIST
ISPAL → ISPALLISTKIND
U111(tt) → U121(isPalListKind)
U441(tt) → ISLIST
ISNEPAL → U711(isQid)
U251(tt) → ISLIST
U731(tt) → U741(isPalListKind)
U231(tt) → ISPALLISTKIND
ISNELIST → ISPALLISTKIND
U731(tt) → ISPALLISTKIND
U551(tt) → U561(isList)
U451(tt) → ISNELIST
U541(tt) → U551(isNeList)
U241(tt) → ISLIST
U821(tt) → ISNEPAL
U721(tt) → U731(isPal)
U241(tt) → U251(isList)
U531(tt) → ISPALLISTKIND
U821(tt) → U831(isNePal)
U451(tt) → U461(isNeList)
U321(tt) → U331(isQid)
U811(tt) → ISPALLISTKIND
U411(tt) → U421(isPalListKind)
ISPAL → U811(isPalListKind)
U711(tt) → U721(isPalListKind)
U121(tt) → U131(isNeList)
ISLIST → U111(isPalListKind)
U721(tt) → ISPAL
U111(tt) → ISPALLISTKIND
U211(tt) → U221(isPalListKind)
U911(tt) → ISPALLISTKIND
U711(tt) → ISPALLISTKIND
ISNEPAL → ISQID
U411(tt) → ISPALLISTKIND
U811(tt) → U821(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
U231(tt) → U241(isPalListKind)
ISNELIST → U511(isPalListKind)
ISNELIST → U311(isPalListKind)
U531(tt) → U541(isPalListKind)
U321(tt) → ISQID
U251(tt) → U261(isList)
U121(tt) → ISNELIST
ISPALLISTKIND → U911(isPalListKind)
U521(tt) → U531(isPalListKind)
U911(tt) → U921(isPalListKind)
ISNELIST → U411(isPalListKind)
ISLIST → U211(isPalListKind)
U211(tt) → ISPALLISTKIND
U431(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 3 SCCs with 30 less nodes.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPALLISTKIND → U911(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
U911(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPALLISTKIND → U911(isPalListKind)
ISPALLISTKIND → ISPALLISTKIND
U911(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISPALLISTKIND → U911(isPalListKind) at position [0] we obtained the following new rules:
ISPALLISTKIND → U911(tt)
ISPALLISTKIND → U911(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
ISPALLISTKIND → U911(U91(isPalListKind))
ISPALLISTKIND → U911(tt)
ISPALLISTKIND → ISPALLISTKIND
U911(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
The TRS P consists of the following rules:
ISPALLISTKIND → U911(U91(isPalListKind))
ISPALLISTKIND → U911(tt)
ISPALLISTKIND → ISPALLISTKIND
U911(tt) → ISPALLISTKIND
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
s = ISPALLISTKIND evaluates to t =ISPALLISTKIND
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
The DP semiunifies directly so there is only one rewrite step from ISPALLISTKIND to ISPALLISTKIND.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U711(tt) → U721(isPalListKind)
U811(tt) → U821(isPalListKind)
U721(tt) → ISPAL
ISNEPAL → U711(isQid)
ISPAL → U811(isPalListKind)
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U711(tt) → U721(isPalListKind)
U811(tt) → U821(isPalListKind)
U721(tt) → ISPAL
ISPAL → U811(isPalListKind)
ISNEPAL → U711(isQid)
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNEPAL → U711(isQid) at position [0] we obtained the following new rules:
ISNEPAL → U711(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U711(tt) → U721(isPalListKind)
U811(tt) → U821(isPalListKind)
ISNEPAL → U711(tt)
U721(tt) → ISPAL
ISPAL → U811(isPalListKind)
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U711(tt) → U721(isPalListKind)
U811(tt) → U821(isPalListKind)
U721(tt) → ISPAL
ISNEPAL → U711(tt)
ISPAL → U811(isPalListKind)
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U711(tt) → U721(isPalListKind) at position [0] we obtained the following new rules:
U711(tt) → U721(U91(isPalListKind))
U711(tt) → U721(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U711(tt) → U721(tt)
U811(tt) → U821(isPalListKind)
ISNEPAL → U711(tt)
U721(tt) → ISPAL
U711(tt) → U721(U91(isPalListKind))
ISPAL → U811(isPalListKind)
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U811(tt) → U821(isPalListKind) at position [0] we obtained the following new rules:
U811(tt) → U821(tt)
U811(tt) → U821(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U811(tt) → U821(tt)
U811(tt) → U821(U91(isPalListKind))
U711(tt) → U721(tt)
U721(tt) → ISPAL
ISNEPAL → U711(tt)
U711(tt) → U721(U91(isPalListKind))
ISPAL → U811(isPalListKind)
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISPAL → U811(isPalListKind) at position [0] we obtained the following new rules:
ISPAL → U811(tt)
ISPAL → U811(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U811(tt) → U821(tt)
ISPAL → U811(U91(isPalListKind))
U711(tt) → U721(tt)
U811(tt) → U821(U91(isPalListKind))
ISNEPAL → U711(tt)
U721(tt) → ISPAL
ISPAL → U811(tt)
U711(tt) → U721(U91(isPalListKind))
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
U821(tt) → ISNEPAL
U811(tt) → U821(tt)
ISPAL → U811(U91(isPalListKind))
U711(tt) → U721(tt)
U811(tt) → U821(U91(isPalListKind))
ISNEPAL → U711(tt)
U721(tt) → ISPAL
ISPAL → U811(tt)
U711(tt) → U721(U91(isPalListKind))
The TRS R consists of the following rules:
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U91(tt) → U92(isPalListKind)
U92(tt) → tt
s = ISNEPAL evaluates to t =ISNEPAL
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
ISNEPAL → U711(tt)
with rule ISNEPAL → U711(tt) at position [] and matcher [ ]
U711(tt) → U721(tt)
with rule U711(tt) → U721(tt) at position [] and matcher [ ]
U721(tt) → ISPAL
with rule U721(tt) → ISPAL at position [] and matcher [ ]
ISPAL → U811(tt)
with rule ISPAL → U811(tt) at position [] and matcher [ ]
U811(tt) → U821(tt)
with rule U811(tt) → U821(tt) at position [] and matcher [ ]
U821(tt) → ISNEPAL
with rule U821(tt) → ISNEPAL
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
Q DP problem:
The TRS P consists of the following rules:
U221(tt) → U231(isPalListKind)
U241(tt) → U251(isList)
U541(tt) → ISNELIST
U551(tt) → ISLIST
U231(tt) → U241(isPalListKind)
U111(tt) → U121(isPalListKind)
U441(tt) → ISLIST
U411(tt) → U421(isPalListKind)
ISNELIST → U511(isPalListKind)
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U511(tt) → U521(isPalListKind)
U121(tt) → ISNELIST
U441(tt) → U451(isList)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
ISLIST → U111(isPalListKind)
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → ISLIST
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
ISLIST → U211(isPalListKind)
U421(tt) → U431(isPalListKind)
The TRS R consists of the following rules:
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
U13(tt) → tt
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
U33(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U71(tt) → U72(isPalListKind)
U72(tt) → U73(isPal)
U73(tt) → U74(isPalListKind)
U74(tt) → tt
U81(tt) → U82(isPalListKind)
U82(tt) → U83(isNePal)
U83(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
isNePal → U71(isQid)
isPal → U81(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
isQid → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We can use the usable rules and reduction pair processor [15] with the Ce-compatible extension of the polynomial order that maps every function symbol to the sum of its argument. Then, we can delete all non-usable rules [17] from R.
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U221(tt) → U231(isPalListKind)
U241(tt) → U251(isList)
U541(tt) → ISNELIST
U551(tt) → ISLIST
U231(tt) → U241(isPalListKind)
U111(tt) → U121(isPalListKind)
U441(tt) → ISLIST
U411(tt) → U421(isPalListKind)
ISNELIST → U511(isPalListKind)
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U511(tt) → U521(isPalListKind)
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U441(tt) → U451(isList)
U521(tt) → U531(isPalListKind)
ISLIST → U111(isPalListKind)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
U421(tt) → U431(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U221(tt) → U231(isPalListKind) at position [0] we obtained the following new rules:
U221(tt) → U231(U91(isPalListKind))
U221(tt) → U231(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U241(tt) → U251(isList)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U411(tt) → U421(isPalListKind)
U511(tt) → U521(isPalListKind)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U421(tt) → U431(isPalListKind)
U221(tt) → U231(U91(isPalListKind))
U541(tt) → ISNELIST
U231(tt) → U241(isPalListKind)
U111(tt) → U121(isPalListKind)
ISNELIST → U511(isPalListKind)
U441(tt) → ISLIST
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U241(tt) → U251(isList) at position [0] we obtained the following new rules:
U241(tt) → U251(tt)
U241(tt) → U251(U21(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U221(tt) → U231(tt)
U551(tt) → ISLIST
U411(tt) → U421(isPalListKind)
U511(tt) → U521(isPalListKind)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U231(tt) → U241(isPalListKind)
U111(tt) → U121(isPalListKind)
U441(tt) → ISLIST
ISNELIST → U511(isPalListKind)
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U231(tt) → U241(isPalListKind) at position [0] we obtained the following new rules:
U231(tt) → U241(U91(isPalListKind))
U231(tt) → U241(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U221(tt) → U231(tt)
U551(tt) → ISLIST
U411(tt) → U421(isPalListKind)
U511(tt) → U521(isPalListKind)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U111(tt) → U121(isPalListKind)
U231(tt) → U241(tt)
ISNELIST → U511(isPalListKind)
U441(tt) → ISLIST
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U111(tt) → U121(isPalListKind) at position [0] we obtained the following new rules:
U111(tt) → U121(U91(isPalListKind))
U111(tt) → U121(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U221(tt) → U231(tt)
U551(tt) → ISLIST
U411(tt) → U421(isPalListKind)
U111(tt) → U121(U91(isPalListKind))
U511(tt) → U521(isPalListKind)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U441(tt) → ISLIST
ISNELIST → U511(isPalListKind)
U231(tt) → U241(tt)
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U411(tt) → U421(isPalListKind) at position [0] we obtained the following new rules:
U411(tt) → U421(tt)
U411(tt) → U421(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U511(tt) → U521(isPalListKind)
U111(tt) → U121(U91(isPalListKind))
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U231(tt) → U241(tt)
ISNELIST → U511(isPalListKind)
U441(tt) → ISLIST
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNELIST → U511(isPalListKind) at position [0] we obtained the following new rules:
ISNELIST → U511(U91(isPalListKind))
ISNELIST → U511(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U111(tt) → U121(U91(isPalListKind))
U511(tt) → U521(isPalListKind)
ISNELIST → U511(tt)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U441(tt) → ISLIST
U231(tt) → U241(tt)
U531(tt) → U541(isPalListKind)
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U531(tt) → U541(isPalListKind) at position [0] we obtained the following new rules:
U531(tt) → U541(tt)
U531(tt) → U541(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U511(tt) → U521(isPalListKind)
U111(tt) → U121(U91(isPalListKind))
ISNELIST → U511(tt)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U231(tt) → U241(tt)
U441(tt) → ISLIST
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U511(tt) → U521(isPalListKind) at position [0] we obtained the following new rules:
U511(tt) → U521(U91(isPalListKind))
U511(tt) → U521(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U111(tt) → U121(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
U441(tt) → U451(isList)
ISLIST → U111(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U441(tt) → ISLIST
U231(tt) → U241(tt)
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U441(tt) → U451(isList) at position [0] we obtained the following new rules:
U441(tt) → U451(U11(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U441(tt) → U451(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U441(tt) → U451(tt)
U111(tt) → U121(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
ISLIST → U111(isPalListKind)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U521(tt) → U531(isPalListKind)
U441(tt) → U451(U11(isPalListKind))
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U521(tt) → U531(isPalListKind) at position [0] we obtained the following new rules:
U521(tt) → U531(U91(isPalListKind))
U521(tt) → U531(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U521(tt) → U531(tt)
U441(tt) → U451(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
ISLIST → U111(isPalListKind)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
U441(tt) → ISLIST
U231(tt) → U241(tt)
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(isPalListKind)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISLIST → U111(isPalListKind) at position [0] we obtained the following new rules:
ISLIST → U111(U91(isPalListKind))
ISLIST → U111(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U441(tt) → U451(tt)
U521(tt) → U531(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
ISLIST → U111(tt)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
ISNELIST → U411(isPalListKind)
U541(tt) → U551(isNeList)
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISNELIST → U411(isPalListKind) at position [0] we obtained the following new rules:
ISNELIST → U411(tt)
ISNELIST → U411(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U521(tt) → U531(tt)
U441(tt) → U451(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
U431(tt) → U441(isPalListKind)
U211(tt) → U221(isPalListKind)
ISLIST → U111(tt)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U441(tt) → ISLIST
U231(tt) → U241(tt)
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U541(tt) → U551(isNeList)
ISNELIST → U411(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U541(tt) → U551(isNeList) at position [0] we obtained the following new rules:
U541(tt) → U551(U31(isPalListKind))
U541(tt) → U551(U41(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U441(tt) → U451(tt)
U521(tt) → U531(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
ISLIST → U111(tt)
U211(tt) → U221(isPalListKind)
U431(tt) → U441(isPalListKind)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISNELIST → U411(tt)
ISLIST → U211(isPalListKind)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U211(tt) → U221(isPalListKind) at position [0] we obtained the following new rules:
U211(tt) → U221(tt)
U211(tt) → U221(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U521(tt) → U531(tt)
U441(tt) → U451(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
U431(tt) → U441(isPalListKind)
ISLIST → U111(tt)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U541(tt) → U551(U51(isPalListKind))
U211(tt) → U221(tt)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U441(tt) → ISLIST
U231(tt) → U241(tt)
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
ISNELIST → U411(tt)
U241(tt) → ISLIST
ISLIST → U211(isPalListKind)
U211(tt) → U221(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U431(tt) → U441(isPalListKind) at position [0] we obtained the following new rules:
U431(tt) → U441(U91(isPalListKind))
U431(tt) → U441(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
U431(tt) → U441(U91(isPalListKind))
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U441(tt) → U451(tt)
U521(tt) → U531(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U431(tt) → U441(tt)
U511(tt) → U521(tt)
ISLIST → U111(tt)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
U421(tt) → U431(isPalListKind)
ISNELIST → U511(U91(isPalListKind))
U211(tt) → U221(tt)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISNELIST → U411(tt)
ISLIST → U211(isPalListKind)
U211(tt) → U221(U91(isPalListKind))
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule ISLIST → U211(isPalListKind) at position [0] we obtained the following new rules:
ISLIST → U211(U91(isPalListKind))
ISLIST → U211(tt)
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
Q DP problem:
The TRS P consists of the following rules:
U531(tt) → U541(tt)
U411(tt) → U421(tt)
ISLIST → U211(U91(isPalListKind))
U431(tt) → U441(U91(isPalListKind))
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U521(tt) → U531(tt)
U441(tt) → U451(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U511(tt) → U521(tt)
U431(tt) → U441(tt)
ISLIST → U111(tt)
U241(tt) → U251(U21(isPalListKind))
U411(tt) → U421(U91(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U421(tt) → U431(isPalListKind)
U541(tt) → U551(U51(isPalListKind))
U211(tt) → U221(tt)
ISNELIST → U511(U91(isPalListKind))
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U441(tt) → ISLIST
U231(tt) → U241(tt)
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
ISNELIST → U411(tt)
U241(tt) → ISLIST
U211(tt) → U221(U91(isPalListKind))
ISLIST → U211(tt)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule U421(tt) → U431(isPalListKind) at position [0] we obtained the following new rules:
U421(tt) → U431(tt)
U421(tt) → U431(U91(isPalListKind))
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ RRRPoloQTRSProof
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
Q DP problem:
The TRS P consists of the following rules:
U421(tt) → U431(tt)
U531(tt) → U541(tt)
U411(tt) → U421(tt)
ISLIST → U211(U91(isPalListKind))
U431(tt) → U441(U91(isPalListKind))
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U421(tt) → U431(U91(isPalListKind))
U441(tt) → U451(tt)
U521(tt) → U531(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U431(tt) → U441(tt)
U511(tt) → U521(tt)
ISLIST → U111(tt)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISNELIST → U511(U91(isPalListKind))
U211(tt) → U221(tt)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISNELIST → U411(tt)
U211(tt) → U221(U91(isPalListKind))
ISLIST → U211(tt)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We used the non-termination processor [17] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
The TRS P consists of the following rules:
U421(tt) → U431(tt)
U531(tt) → U541(tt)
U411(tt) → U421(tt)
ISLIST → U211(U91(isPalListKind))
U431(tt) → U441(U91(isPalListKind))
U221(tt) → U231(tt)
U551(tt) → ISLIST
U541(tt) → U551(U41(isPalListKind))
U421(tt) → U431(U91(isPalListKind))
U441(tt) → U451(tt)
U521(tt) → U531(tt)
U111(tt) → U121(U91(isPalListKind))
U521(tt) → U531(U91(isPalListKind))
ISNELIST → U511(tt)
U431(tt) → U441(tt)
U511(tt) → U521(tt)
ISLIST → U111(tt)
U411(tt) → U421(U91(isPalListKind))
U241(tt) → U251(U21(isPalListKind))
U441(tt) → U451(U21(isPalListKind))
U531(tt) → U541(U91(isPalListKind))
U541(tt) → U551(U51(isPalListKind))
ISNELIST → U511(U91(isPalListKind))
U211(tt) → U221(tt)
U221(tt) → U231(U91(isPalListKind))
U241(tt) → U251(U11(isPalListKind))
U541(tt) → ISNELIST
ISLIST → U111(U91(isPalListKind))
U231(tt) → U241(tt)
U441(tt) → ISLIST
U511(tt) → U521(U91(isPalListKind))
U251(tt) → ISLIST
U541(tt) → U551(U31(isPalListKind))
U231(tt) → U241(U91(isPalListKind))
U121(tt) → ISNELIST
ISNELIST → U411(U91(isPalListKind))
U111(tt) → U121(tt)
U451(tt) → ISNELIST
U441(tt) → U451(U11(isPalListKind))
U241(tt) → U251(tt)
U241(tt) → ISLIST
ISNELIST → U411(tt)
U211(tt) → U221(U91(isPalListKind))
ISLIST → U211(tt)
The TRS R consists of the following rules:
isList → U11(isPalListKind)
isList → tt
isList → U21(isPalListKind)
isPalListKind → tt
isPalListKind → U91(isPalListKind)
U21(tt) → U22(isPalListKind)
U22(tt) → U23(isPalListKind)
U23(tt) → U24(isPalListKind)
U24(tt) → U25(isList)
U25(tt) → U26(isList)
U26(tt) → tt
U91(tt) → U92(isPalListKind)
U92(tt) → tt
U11(tt) → U12(isPalListKind)
U12(tt) → U13(isNeList)
isNeList → U31(isPalListKind)
isNeList → U41(isPalListKind)
isNeList → U51(isPalListKind)
U13(tt) → tt
U51(tt) → U52(isPalListKind)
U52(tt) → U53(isPalListKind)
U53(tt) → U54(isPalListKind)
U54(tt) → U55(isNeList)
U55(tt) → U56(isList)
U56(tt) → tt
U41(tt) → U42(isPalListKind)
U42(tt) → U43(isPalListKind)
U43(tt) → U44(isPalListKind)
U44(tt) → U45(isList)
U45(tt) → U46(isNeList)
U46(tt) → tt
U31(tt) → U32(isPalListKind)
U32(tt) → U33(isQid)
isQid → tt
U33(tt) → tt
s = U541(tt) evaluates to t =U541(tt)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequence
U541(tt) → ISNELIST
with rule U541(tt) → ISNELIST at position [] and matcher [ ]
ISNELIST → U511(tt)
with rule ISNELIST → U511(tt) at position [] and matcher [ ]
U511(tt) → U521(tt)
with rule U511(tt) → U521(tt) at position [] and matcher [ ]
U521(tt) → U531(tt)
with rule U521(tt) → U531(tt) at position [] and matcher [ ]
U531(tt) → U541(tt)
with rule U531(tt) → U541(tt)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.